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Abstract

The large-deformation three-dimensional glass—rubber constitutive model for isotropic, amorphous, linear polymers near the glass
transition, previously proposed, has been extended to include a spectrum of network relaxations. In addition, an experimental programme
of uniaxial tension and compression tests was carried out on high molecular weight cast sheets of poly(methyl methacrylate) (PMMA), with
varying strain-rate and temperature across the range from 114 to 190 °C, encompassing the thermoforming range of practical importance.
The extended model was found to fit successfully the data for PMMA, provided a doublet network relaxation spectrum was employed. The
original model, with only a single network relaxation, was found to be grossly inadequate when there was significant network relaxation by
entanglement slippage. Parameters of the model for PMMA, obtained by fitting to the new data, were compared with values obtained by other

routes. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In some important manufacturing processes, amorphous
thermoplastic polymers undergo large stretching flows
above the glass transition. Examples are thermoforming,
biaxial stretching of films, and bottle blowing. In the opti-
misation of these processes, and of the materials for them, it
is clearly desirable to be able to carry out numerical simula-
tions of them, for example by exploiting the finite element
(FE) method. At present, however, the FE analyst faces a
major problem: polymers show complex -constitutive
response in the relevant ranges of temperature and rate.
As usual, the engineering need is for a constitutive model
that captures the essential features of material behaviour,
but at low computational cost. The latter point is crucial.
To be useful, FE analyses must not be too slow. The aim of
the work described here was to devise a suitable constitutive
model, for use in simulating hot-stretching of cast sheets of
uncrosslinked poly(methyl methacrylate) (PMMA), in the
temperature range immediately above the glass transition,
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such as encountered in thermoforming or biaxial orientation
processes.

The complexity of response results from the fact that,
under these conditions, the polymer is highly dependent
on rate and temperature. It exhibits features associated
with several physical processes, best described in terms of
the ‘tube’ model for linear polymers [1]. Their relative
dominance is a sensitive function of rate and temperature.
At the highest rates and lowest temperatures, close to the
glass transition, the stress tensor is dominated by the contri-
bution due to stretching of primary and secondary bonds o°,
relaxed by segmental motion within the tube (longest time
constant = the Rouse time 7, for motion on a length scale of
up to one tube diameter). The response is that of a visco-
elastic glassy solid. In the intermediate region, the stress is
dominated by that arising from conformational entropy
reduction o€, as molecules are constrained to follow the
stretch of the tube. The response is that of a hyperelastic
rubbery solid. At the lowest rates and highest temperatures
the conformational stress relaxes, first by retraction along
the tube (time constant = the Rouse time 7z for motion on a
length scale of the whole molecule) and finally by escape
from the tube (time constant = the disengagement or
‘reptation’ time 74). The response is that of an elasto-
viscous fluid.

The last two decades have seen great strides in
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constructing a molecular theory of the above sequence of
processes in terms of the tube model—for a recent review
see McLeish and Milner [2]. But the molecular theory per se
does not yet provide a viable model for the present context.
Firstly, certain key features are still missing from the theory:
in particular ‘yield’ in the glassy response, and the important
effects of molecular weight distribution. Secondly, the
computational complexity involved in implementing a
large deformation model with all the features of the
molecular theory would be prohibitive for present-day
computing resources, for realistic simulations of stretching
flow processes.

In this situation, we adopt the approach employed in
previous work on hot-drawing of poly(ethylene terephtha-
late) (PET), and take as a starting point the ‘glass—rubber’
constitutive model proposed by Buckley and Jones [3],
modified to include relaxation of ¢° as proposed by
Adams et al. [4], but without the additional feature of stress
crystallisation needed in the case of PET. This model is
three-dimensional, encompasses large deformations, and
captures the major features of response observed experi-
mentally on either side of the glass transition. It is quasi-
physical: in particular limiting cases, it agrees with
molecular theory, but in general, it differs in its detailed
predictions. An important practical question is whether
any of these differences are significant. The key advantage
of the model is that it appears to be a useful engineering
compromise. It captures polymer behaviour to reasonable
accuracy on either side of the glass transition, but also has
acceptable computational efficiency, for FE models of
stretching flow processes near the glass transition, as
reported elsewhere for PET [5].

This paper has three aims. Firstly, we demonstrate wider
applicability of the form of model proposed, by applying it
to cast, high molecular weight PMMA. This material was
chosen for its practical importance in the context of thermo-
forming, and its theoretical advantage of availability in
accurately isotropic form. Moreover, with its high molecu-
lar weight and lack of any crystallisation, this material
provides the ideal contrast to the low molecular weight,
stress-crystallising PET polymer, where the model was
applied previously. Secondly, we show how the model is
extended to include a relaxation spectrum for o°, allowing
for large elastic and viscous deformations, as needed to fit
high molecular weight PMMA in detail. Thirdly, we report
results from a new experimental study of the constitutive
response of PMMA above T,, in which temperature, strain-
rate and strain-state are varied, and we apply the new model
to the data.

2. Background

There is broad agreement among previous authors on the
outline form of any constitutive model for describing defor-
mation of amorphous polymers near the glass transition. It

must combine a stress exhibiting elastic—viscoplastic
response, acting in parallel with a stress that shows
pronounced strain-stiffening. The present model has this
form, as have previous models, from the original one-
dimensional model of Haward and Thackray [6] to the
fully three-dimensional model of Boyce and co-workers
[7]. Indeed Haward has shown that the same form of
model can even be fitted to data for semi-crystalline
polymers [8].

The strain-stiffening is generally attributed to rubber-like
entropic elasticity, due to the reducing entropy of aligning
mobile chains, even when observed below the glass
transition. Certainly, the qualitative appearance of the
phenomenon below T, is similar to that observed in the
rubbery state, where there is well-established evidence for
entropy domination of the free-energy change. However, it
should be noted that the use of the same description below
T, has not yet been justified rigorously. In the present
model, however, we follow usual practice and invoke a
conformational entropy function when calculating this part
of the stress. The entropy function used is that derived by
Edwards and Vilgis [9], for a network of crosslinked and
entangled chains where the tube constraint is represented by
a series of slip links along the molecule, in the limit where
the density of crosslinks is negligible. Thus, in its rubber-
elastic response—obtaining on timescales 7, < t K TR—
the model is consistent with molecular theory. The
Edwards—Vilgis model has also been applied successfully
(in its earlier form ignoring finite chain extensibility [10]) to
hot-stretching of PET by Matthews et al. [11] and to PVC by
Sweeney and Ward [12]. Other authors have used semi-
empirical descriptions of the rubber-elastic response.
Kuhn’s well-known ‘inverse-Langevin’ expression for the
force acting between two junction points of a crosslinked
non-Gaussian network of chains of finite length has been
used. The isotropic distribution of initial end-to-end vectors
was represented by a 3-chain approximation [7] or an
8-chain approximation [13], while Wu and van der Giessen
claimed an empirical mix of 3-chain and 8-chain mimics
best the isotropic distribution [14]. In fact it appears that, for
practical purposes in fitting data, the molecularly based
Edwards—Vilgis approach or the semi-empirical approaches
may be equally successful.

On the other hand, there is more serious disagreement
among previous authors on how relaxation of o should
be described. In the present model [4,5,15] and in more
recent work on PET by Boyce and co-workers [16], the
total deformation is decomposed into a portion that is an
entropy elastic stretch (corresponding to molecular align-
ment due to constraint by the stretched tube) and a portion
that is a viscoplastic stretch (corresponding to retraction
and/or escape from the tube). A one-dimensional analogue
would therefore be a spring in series with a dashpot. One
such element was found to be sufficient to fit data in the case
of PET [4], but as will be shown later, more than one
element may be necessary. In the linear viscoelastic limit
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the model is therefore consistent with the various forms of
Maxwell model often used in modelling flow of elasto-
viscous fluids: in this limit it is also consistent with the
molecular theory. The latter results, for example, in a stress
relaxation modulus in shear that is a sum of functions
decaying exponentially with time [1] (a Prony series),
characteristic of a generalised Maxwell model.

Other authors, however, have taken a different approach.
The inability of a purely hyperelastic network model to
describe orientation or constitutive response in thermo-
plastics at large strains has been interpreted as evidence
for an entropy-elastic network with variable chain density:
reducing with increasing time, temperature or strain during
deformation. Several authors deduce the network chain
density to be temperature-dependent. Examples are Raha
and Bowden [17], Arruda et al. [18], and G’Sell and Souahi
[19] all of whom applied this approach to PMMA. These
authors assume the density of entanglement junction points
in the network to decay with increasing temperature accord-
ing to a thermally activated process (although Raha and
Bowden refer to ‘cohesion points’ rather than entangle-
ments).

Within a deformation experiment at fixed temperature,
the inability of a network to account quantitatively for bire-
fringence changes in PMMA has been attributed to the
network chain density decaying with increasing strain, as
also proposed by Raha and Bowden [17]. These authors
found that an exponential decay fitted their data. Later
work by Botto et al. [20] showed that, although Raha and
Bowden’s approach could fit birefringence data during
drawing of PMMA just below the glass transition at
90 °C, it provided a very poor fit above T, at 135 °C, and
also noted that the theory produced the unphysical result of
zero birefringence at large strains. They therefore modified
the model to include two networks acting in parallel, a
permanent network with N, chains per unit volume, and a
temporary network of N, chains per unit volume in the
unstrained state which breaks down on deformation. Using
this approach, they obtained a good fit to data both below
and above the glass transition. It is significant for the present
work that two networks were necessary. One might regard
the N, network as the fraction of the network with a sub-
stantially higher viscosity than the relaxing N; network.
Sweeney and Ward [21] later re-examined the approach of
Botto et al. using the slip-link model of Ball et al. and
extended the representation to three dimensions, by allow-
ing the slip-link density N; to be a function of the first stretch
invariant I;. To accommodate the fact that a constant
network also cannot describe the variation of drawing stress
with strain-rate, Sweeney and Ward, working on PVC [12],
and Matthews et al. working on PET [11], modelled biaxial
drawing by allowing N, to increase linearly with the
logarithm of the octahedral shear strain-rate.

It is clear from such work that satisfactory empirical fits
to data can be achieved by a network model with varying
chain density. This approach is also computationally

efficient when employed in a numerical model. There
are, however, two major difficulties. Firstly, there is the
theoretical objection of a lack of contact with the molecular
theory, and correspondingly a lack of convergence on the
known generalised Maxwell-model type of response in the
linear viscoelastic limit. Secondly, there is the practical
objection that each empirical description in terms of a
variable network chain density applies only to a particular
context: for example monotonically increasing strain, and
constant strain-rate and temperature. Any non-trivial FE
simulation of polymer response in a product or process,
however, will involve situations of unloading, and varying
strain-rate and possibly temperature. Under these conditions
such a model is insufficiently defined, and predicts
unphysical response.

Such deficiencies are not shared by the glass—rubber
constitutive model employed in the present work. However,
potentially, it does pose a different problem: the significant
computational effort involved in modelling the network and
multiple viscous relaxation processes at large deformations.
This difficulty could render the approach impractical,
despite its theoretical advantages. The principal aim of
this paper, therefore, is to investigate the practicality of
introducing a spectrum of network relaxations to model
PMMA. We demonstrate that it is possible to represent
the behaviour with the small number of relaxation processes
required for numerically efficient FE analyses, and we show
how the parameter set may be obtained.

There is little published data with which to assess the
performance of the glass—rubber model for PMMA above
the glass transition (ca. 110 °C), in the time—temperature
window of practical relevance to processing. The large
deformation constitutive response of PMMA has been
studied previously in compression at temperatures below
T,, notably by Bauwens-Crowet up to 100 °C [22] and
more recently by Arruda et al. [18]. In tension, the problem
of obtaining similar information is rendered more difficult,
by brittle fracture intervening at temperatures below
approximately 40 °C, and by necking at higher tempera-
tures. Nevertheless, by careful measurement of strain and
true stress within the neck, Hope et al. succeeded in measur-
ing meaningful true-stress/strain relations in tension at
90 °C for a wide range of strain-rates [23]. Using a similar
approach, with specially developed automated equipment,
G’Sell and Souahi obtained true-stress/strain data in tension,
through the glass transition from 95 to 140 °C [19]. From
these earlier authors, there is also some information on the
effects on the constitutive response of varying molecular
weight [19,23,24], free monomer [24], and crosslinking
[19]. Since, however, the work of G’Sell and Souahi did
not include the important effects of varying strain-rate and
strain-state, their results are insufficient to provide an
adequate test for the fully three-dimensional constitutive
model proposed here. Consequently, we have carried out a
wider experimental study of one grade of PMMA in the
temperature region of interest. In a later section, results
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are interpreted in terms of the model and a set of model
parameters determined.

3. The glass—rubber constitutive model

The constitutive model employed in this work is an
extension of that outlined previously [4], based on a study
of hot-drawing of amorphous PET under biaxial stress
[4,15]. Further details of its implementation were given by
Gerlach et al. [5]. The following is an outline of the existing
model as applied to a non-crystallising polymer, and its
generalisation as needed to model PMMA from the glass
transition to thermoforming temperatures.

3.1. Existing model

For applicability within the FE context, the purpose of the
model is to compute the Cauchy stress tensor at time ¢, for a
given history of the three-dimensional deformation field
x(X), where x and X are the current and initial positions,
respectively, of any material particle. The physical basis of
the model is the knowledge that there are two dominant
sources of strain-induced free energy change in a
polymer—perturbation of inter-atom potential energy
(giving the ‘bond-stretching’ stress o), and perturbation
of chain conformational entropy (giving the ‘conforma-
tional’ stress o°). The key assumption of the model is that
these act independently, subject to the same deformation, as
expressed through the deformation gradient tensor F. Thus
there is parallel coupling between them, which may be
expressed in terms of F and the Cauchy stress tensor o as
follows

ox b
— =F’=F, 1
X ()

F

c=0c¢"+c" 2)

Since the stress response is dominated by o below the
glass transition and by o ¢ above it, it follows that if these
are constitutively prescribed in terms of F, the model is
equally applicable above and below the glass transition.
For this reason we refer to the model as a glass—rubber
constitutive model of a polymer. In describing flow of the
model below, it will be convenient to focus on the tensors of
rate of deformation (symmetric part of the velocity gradi-
ent) giving rise to o and ¢°. In terms of these, Eq. (1)
gives

D =D’ =D" 3)

In the glassy state where o ® is dominant, perfect elasticity is
not observed: elastic distortion of inter- and intra-molecular
potentials cannot account for the entire deformation. There
is also a viscoplastic contribution, arising from the
thermally activated short-range diffusion of molecular
segments. It follows that the rate of deformation D° giving
rise to o® is the addition of elastic and viscoplastic

contributions:
D" =D° + D", )

In a similar manner, under conditions where o ¢ is domi-
nant, there is much evidence to suggest that elastic stretch of
a network of constant properties cannot account for the
entire deformation, as we saw in Section 2. Consequently,
the corresponding rate of deformation is also decomposed
into a part associated with network stretch (n) and another
part associated with relaxation of molecular orientation by
retraction within the tube and escape from the tube—or
expressed in terms of the entanglements that define the
tube, by slippage of the entanglements (s):

D¢ =D" + D" )

Egs. (3)-(5) are the key kinematic assumptions of the
model. They differ in detail from those employed in the
similar model proposed by Boyce et al. for PET [16], in
that these authors invoke the alternative description, in
terms of a multiplicative decomposition of the deformation
gradient. For general deformations including rotations, the
two approaches are not equivalent in the presence of large
elastic stretches, as encountered in the present work in the
network response.

The hydrostatic part of the bond-stretching response is
taken to be linear elastic with bulk modulus K°. The mean
stress ob, and the volume ratio J are defined by

op = Lo, J =detF (6)

and they are related by the equation
ob =K’InJ + o, (7

where 0'[?10 is the initial, built-in, bond-stretching stress
resisting collapse of the entropic network.

Elastic and viscous parts of the deviatoric rate of defor-
mation, D® and DV, respectively, are assumed to be
governed by isotropic linear elasticity and an isotropic
flow rule as follows, where S is the deviatoric part of o’
and a hat denotes the time derivative with respect to a
reference frame rotating with the material:

o8 g8

D= P T e ®
Here, G is the bond-stretching contribution to the shear
modulus, and the relaxation time 7 is given in terms of
the linear viscoelastic relaxation time 7, and a stress-
dependent factor a derived from a three-dimensional
generalisation of the Eyring flow model. Eq. (4), applied
to the deviatoric part of the rate of deformation D’, then
yields the differential equation

b
§* =26'D’ - 57 )

ab . . .
where S~ (identified with the Jaumann rate of stress) and 7
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are given by

§" =8" + s'w — ws?, (10a)

- VpAo};
exp| —— b
RT Vs Toct

. VsTgct 2RT °
sinh| ——

In Egs. (10a) and (10b), W is the spin tensor, TEct is the
octahedral shear stress and Aogl is the strain-induced
mean stress o), — crrlao, while V, and V, are the shear and
pressure activation volumes, respectively. Details of the
derivation of a are given elsewhere [3].

Dependence of the viscoelastic relaxation time on
temperature 7 and structure (via fictive temperature 7%) is
expressed through the equation:

T=ar, a= (10b)

o) o) AH, AH, )

= 1) ex - + —
0= p(Tf—Too T; — T, RT  RT*

(1)

where 7, is the linear viscoelastic relaxation time for a
reference temperature T° and structural state (fictive
temperature) Ty . Again, the reader should refer to Buckley
and Jones [3] for the detailed derivation. Above the glass
transition, where structural equilibrium obtains 7; = T, and
Eq. (11) reduces to that employed by Macedo and Litovitz
[25].

Consider now the conformational contribution to the
stress. Entropic elasticity of the entanglement network is
expected to be highly non-linear, because of the finite
extensibility of chains. This explains strain-stiffening in
amorphous polymers above the glass transition, and is
usually assumed to explain it below 7, in addition. It is
convenient therefore to calculate the conformational stress
directly by differentiation of the conformational free energy
density A°. Theories of rubber elasticity yield expressions
for A® in terms of the principal network stretches A} (i =
1...3). Thus, the principal components of the Cauchy stress
are obtained from

¢ L OA“(AT, A2, A3)
7T T o (12)
In the present work, the Edwards and Vilgis [9] expression
for A° has been employed. It was derived for the case of a
network of freely orienting chains of finite length, where the
tube constraint is approximated by junction points of a
physical nature with some freedom of movement (i.e.
entanglements)—the slip-links. The network behaviour of
uncrosslinked PMMA can be modelled as a form of
Edwards—Vilgis rubber, in the limit where there are no

chemical crosslinks:

AC()\l, )\2, )\3) =

NsT | (1+ n)(l—az)i

2 P 1+1))\2
1 —aZZ)\Z =

3
+mA) +In(1 = o D A9 |

i=1

3
+ > In(1
i=1

13)

where N, is the number density of slip-links, n is a para-
meter specifying the looseness of the entanglements (n = 0
for a crosslink), and « is a measure of the inextensibility of
the entanglement network. It is related to the number n of
freely orienting (Kuhn) segments per network chain:
a=+n"T ). The Edwards—Vilgis model is a further
development of the model of Ball et al. [10], and in the
limit that the inextensibility « is vanishing small, implying
a large number of Kuhn segments per chain, is equivalent to
the Ball model.

Completion of the model requires a representation of the
relaxation of conformational stress by molecular diffusion
along the tube: in the language of entanglements—
entanglement slip. Such an extension of the original
model was discussed in detail by Adams et al. for PET
[4], with further details on its implementation given by
Gerlach et al. [5]. For PMMA, extension of the Buckley—
Jones model [3] to include entanglement slippage is in
principal more straightforward, as there is no crystallisation
process to modify the rate of flow. To minimise complexity,
an isotropic, isochoric Newtonian flow rule is invoked and
the slippage rate of deformation appearing in Eq. (5) is then
given by:

C
D=2 (14)
Y

where 7y is a slippage viscosity that depends only on
temperature. The failure to capture non-Newtonian flow
will render the model inaccurate at high rates of deforma-
tion, but this form was sufficient at the rates employed in the
present tests (see below). It may be noted that, although the
slippage viscosity is assumed constant, because the network
strains are large the conformational behaviour is non-linear
viscoelastic. The equivalent relaxation time depends on the
stretch-dependent hyperelastic moduli, and so is neither
constant nor isotropic. Consequently, it is not helpful to
work in terms of a slippage relaxation time (or times), and
throughout the model we define slippage behaviour in terms
of viscosities. The temperature dependence of the slippage
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viscosity is modelled in terms of the Fulcher equation

CS c

where again we have T; = T above the glass transition, and
the limiting or Vogel temperature Ty, for the slippage
process may not in general be identical to that for the
segmental flow process.

3.2. Extension of the constitutive model

In a previous paper [26], two of us outlined the extension
of the glass—rubber constitutive model to a model with a
spectrum of bond-stretching relaxation times, and found
success in accounting for key features of the non-linear
viscoelastic response in the glassy state of PMMA. There
was assumed to be a single elastic shear modulus Gb, but a
range of N activation energies and entropies, giving rise to a
distribution of N relaxation times. Polymer with the jth
relaxation time was taken to account for a volume fraction
v; of the total volume of the glass, replacing Eq. (2) by

N N
c=>Yvie)+o¢ with Y v =1 (16)
= j=1

To provide detailed modelling of flow above the glass tran-
sition, we now extend the model to include an arbitrary
number P of different network relaxations, so that the
total Cauchy stress tensor becomes:

N P
Z O +ZW]<0']< with Z"j:Zszl.
J=1 k=1

a7

In fact, in the present application—modelling of large
deformations of PMMA above the glass transition—the
bond-stretch stress makes only a small contribution and it
is sufficient to take N = 1; but we show later that the data
require P > 1. This is consistent with the tube model of
relaxation of the conformational stress, that results in a
relaxation spectrum. In addition, in a polydisperse polymer
there is likely to be a further contribution to the spectrum
arising from heterogeneity of the entanglement network,
since relaxation times are predicted by the tube model to
have strong dependence on molecular weight (M). For
example, 7y ~ M* and 7, ~ M® (see Doi and Edwards
[1]). If heterogeneity is the dominant cause of the spectrum,
the weighting factor w in Eq. (17) is the number fraction of
slip-links associated with a viscosity 7y,. Whatever the
cause, Egs. (5) and (14) are replaced by the sets of equations

, S
D° = D! + D} where D} = =%
Yk

k=1..P). (18)

It follows that, at any instant, there is a range of slippage
rates of deformation, and hence a range of rates of network
deformation, which with appropriate integration yield the

corresponding  principal network stretches Aj (i =
1...3, k= 1...P). Each principal conformational stress is
then obtained by generalising Eq. (12)

C n n n

ol = }%ﬁ‘w (i=1.3,k=1.P). (19)
In evaluating Eq. (19), we assume the nature of the slip-links
and the length of network chains between entanglements to
be common to the whole material, since they depend only on
the chemical structure of the monomer and are independent
of M. Hence common values of N, & and 7 are employed. It
is clear from Egs. (17) and (18) that the resulting model, in
the linear viscoelastic limit is a generalised Maxwell model
in shear. This agrees with the molecular theory. If G% is the
rubbery plateau shear modulus, the linear viscoelastic
relaxation time corresponding to vy, is T, = yk/2GR,. By
assigning the values w;, = 8/m’k> and T = 1'd/k2 for k
odd, and zero otherwise, with P very large, we can if we
wish retrieve the Doi—Edwards spectrum [1] for a mono-
disperse linear polymer in the linear viscoelastic limit. For
practical engineering purposes, however, there is every
incentive to keep P as small as possible and to fit w; and
v, empirically.

In the present work, the entire constitutive model was
implemented numerically in FORTRAN, as a fully three-
dimensional user material subroutine (UMAT) suitable for
use with the commercial large-strain FE code ABAQUS.
The predicted responses of the model reported below were
computed using a ‘stepper’ program that simulated
ABAQUS in its interactions with the subroutine. For a
given history of F and temperature, the stress tensor was
calculated as a function of time, by numerical integration of
the equations of the model. In the design of the UMAT,
considerable attention was paid to achieving numerical
accuracy, stability and efficiency, and it has performed satis-
factorily within ABAQUS in modelling of large inhomo-
geneous deformations of cast PMMA in sheet form.
Further details lie beyond the scope of the present paper.

4. Experiments
4.1. Material

The polymer used in this work was ICI PMMA homo-
polymer in the form of cast sheet supplied by ICI Acrylics
(now Ineos Acrylics). This is the conventional high
molecular weight form of PMMA with weight average
molecular weight approximately 10°Da. One grade
(PMMAL) of nominally 1 mm thick sheet was used for all
the tensile experiments described in this paper, and a second
grade (PMMA?2) of nominally 2 mm thick sheet was used
for all the compressive tests. A small difference of less than
5 K in the glass transition temperatures of the two grades
was apparent both from the mechanical tests and from DSC
studies. This is believed to be due to the presence of a very
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small proportion of low molecular weight polymer or
oligomer in PMMAZ2. There was no chemical cross-linking
present in either grade.

4.2. Specimens

Before machining, the cast PMMA was normalised to
remove even the slightest residual anisotropy from the cast-
ing process, and to ensure that the specimens all had the
same initial thermal history, and were free of any residual
thermal stress. The normalisation process involved: heating
from ambient to 140 °C at 1 °C per minute; holding at a
constant temperature of 140 °C for 20 min; slow cooling
at 4 °C per hour down to 103 °C; maintaining this tempera-
ture for 20 min and then slow cooling at 4 °C per hour down
to ambient temperature. From the cast and normalised
sheets, specimens were prepared for uniaxial tension and
compression tests, by means of numerically controlled
machining, with each specimen cut individually and without
coolant. Tensile specimens were of dumbbell geometry with
a width of 5 mm and straight-sided gauge length of length
80 mm. The compression specimens consisted of circular
disks of diameter 10 mm, cut individually from the second
batch of 2 mm thick sheet and stacked five at a time to form
a cylinder with a ratio of diameter: height of approximately
1:1.

4.3. Test procedures

All tests were carried out isothermally, using an Instron
4204 testing machine and an Instron 3119 Series Tempera-
ture Controlled Chamber (Model EC30), with 3119-004
high-temperature pneumatic grips used in the tensile tests.
The Instron Series IX Automated Materials Tester Version
7.51 software package was used to control the tests and
acquire data. All of the experiments in this study were
conducted at constant cross-head speed, i.e. at constant
rate of nominal strain. The raw load-displacement data
were then processed into stress—strain data using in-house
software. For both tensile and compression tests, true stress
was calculated from the nominal stress and axial nominal
strain, assuming incompressibility.

To ensure reproducible thermal histories and freedom
from residual machining stresses, all specimens were
given a further heat-soak at the test temperature or at
140 °C (whichever was the higher) for 20 min, before taking
them to the test temperature for the start of testing. A 5 kN
load cell was used for all the compressive tests and the lower
temperature tensile tests, with a 100 N load cell used for the
high temperature tensile tests. The load cells were air-
cooled with a fan (without this precaution calibration was
often impossible above 150 °C). Maximum nominal strain-
rates were (.75 (tension) and 3.5 min ! (compression);
higher values being avoided, to minimise adiabatic heating.

4.4. Tensile tests

The thermal inertia of the pull-rod connected to the upper
pneumatic grip caused delays in achieving uniformity of
specimen temperature. The temperature of the upper grip
was therefore monitored continually with a thermocouple,
to ensure a uniform specimen temperature prior to testing.
The general procedure for tensile tests below 140 °C was as
follows.

(i) The specimen was placed in the oven and gripped in
the upper pneumatic grip, with a fine thermocouple junc-
tion located adjacent to the specimen. The lower grip was
left open to allow for thermal expansion.

(i1) The oven temperature was raised to 140 °C and main-
tained at this temperature for at least 20 min.

(iii) The oven was cooled down to the test temperature
and maintained at this temperature for a period of 10 min
to ensure stability.

(iv) The oven fan speed was reduced to its lowest setting
to avoid disturbance to the specimen, and the lower
pneumatic grip was closed.

For tests at temperatures above 140 °C a similar pro-
cedure was followed, except that the heat-soak was at the
test temperature and there was no cooling down phase.

To check the uniformity of the deformation tests, the
specimens were marked with a series of horizontal lines
8 mm apart over the gauge length region of the specimen.
The strain in the marked region at the end of the test was
calculated and compared with the strain given by dividing
the final Instron displacement by the specimen gauge length
for a representative sample of tests over a range of strain rate
from 0.8 per minute down to 0.05 per minute and final
strains ranging from 0.66 to 2. It was found that the dis-
placement as measured by the Instron overestimated the true
displacement in the gauge length, but only by a small
amount, caused by the specimen slipping slightly in the
pneumatic grips. The average error in the strain obtained
from the Instron data compared with the strain measured
from the displacement of the marked lines was 2.43%,
and the median error was 2.13%, comparable with
uncertainty in the data from other sources. Therefore,
displacement values recorded by the testing machine were
used without correction in computing tensile strain in the
guage length. No discernible necking was apparent in the
present series of tests.

4.5. Compression tests

In order to capture fully the strain-state dependence of
yield and flow, it was necessary to carry out tests under two
different strain states (recall that the stress dependence of
the viscoelastic relaxation time depends on fwo material
parameters: V; and V,). This objective was met by combin-
ing results from uniaxial compression tests with those from
tension tests. Compression tests were carried out using
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Fig. 1. Example plots of true stress versus nominal strain data for uniaxial

drawing of sample PMMAI at a nominal strain rate of 0.4 min~' and

various temperatures as shown.

Instron compression platens, with the same oven as used for
tension, and following the same thermal sequence prior to
the start of testing. The disk specimens were stacked and
aligned on the lower platen using a specially designed PTFE
tool. To check that the specimens were deforming uniaxially
in the strain range of interest around yield, the compression
tests were recorded on video tape.

Barrelling was minimised by placing a layer of PTFE film
between the specimen and the platens. In the range of
negative true strain and strain rates of interest in the present
work, barrelling was not significant, as demonstrated by the
reproducibility of the stress—strain curves.
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Fig. 2. Example plots of true stress versus nominal strain data for uniaxial

drawing of sample PMMA at a temperature of 120 °C and various nominal
strain rates as shown.
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Fig. 3. Example plots of true stress versus true strain data for uniaxial
compression of sample PMMA?2 at a temperature of 115 °C and various
nominal strain rates as shown.

4.6. Results

Fig. 1 shows examples of stress—strain data obtained in
tension at a range of temperatures from 120 to 180 °C at a
nominal strain rate of 0.4 min~'. At the lowest temperature
the stress—strain curve shows a pronounced yield peak
followed by true stress-softening, then flow where stress
changes only slowly, followed by significant strain-
stiffening. As the temperature is increased the level of stress
in the initial ‘yield’ region drops rapidly, reflecting the
pronounced temperature sensitivity of the relaxation time
7y above the glass transition (where 7; = T in Eq. (11)).
The other major feature of Fig. 1 is the sharp decline in
strain-stiffening as the temperature rises. In terms of the
present model, this reflects the absence of chemical cross-
links in the PMMA network. The rapid fall in the viscosities
v, with increasing temperature, predicted by Eq. (15),
causes the entanglement slippage contribution A* to the
total stretch A to increase, and correspondingly the network
contribution A" and the resulting conformational stress to
decrease.

Figs. 2 and 3 shows examples of stress—strain data
obtained in uniaxial tension and compression, for a range
of nominal strain-rates. At the highest strain-rates there is
considerable true stress softening following yield in both
tension and compression. Its presence in the compression
data confirms that it is a genuine feature of the material and
not an artefact due to undetected necking. Similar effects
were observed in tension tests on PMMA at 90 °C by Hope
et al. [23,24].

5. Fitting the constitutive model to data

For a constitutive model of the complexity of that
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proposed here, a major question in applying it is how the
numerous parameters may be found from a given data set,
with confidence that they represent the best fit to the data. In
the present work, the model was tested against the experi-
mental data and best values of the parameters found, by
using an extension of the systematic approach described
before for PET [4]. It was done in two stages. First, where
key features of the material response could be isolated
unambiguously from experimental data, this was done and
they were least-squares fitted separately to the correspond-
ing equations in the model. This approach was applied to the
glass-like yield response. Second, for the remaining rubber-
like response (entanglement network and slippage), the
whole model was used in conjunction with a commercial
optimisation software package (NAG routine EO4FDF). By
optimising the fit of experimental data to simulations of
tensile drawing experiments at various temperatures, the
remaining parameters were found. Details are given later.

5.1. T, variation

The experimental work to fit the model parameters was
carried out using the two grades of PMMA with slightly
different glass transition temperatures. As the majority of
the experimental work was carried out on sample PMMAL,
the model parameters were found for this grade: data from
sample PMMA?2 were used only to determine parameters
that are independent of temperature. The existence of this
type of T, variation illustrates an important practical point:
model parameters will in general need to be adjusted
slightly for each grade of PMMA. This does not mean,
however, that all the model parameters would need to be
re-fitted. All that would be required would be to ‘calibrate’ a
grade of the cast PMMA by measuring its 7, and to shift
accordingly the parameter T, that fixes the polymer
response on the temperature scale.

5.2. Identification of the rubbery plateau

We first test the core hypothesis of the model: that the
material stress response contains two separate compo-
nents—arising from bond-stretch potentials and conforma-
tional entropy—relaxing on widely differing time/
temperature scales. [sometric plots of stress versus tempera-
ture were generated for a range of strain levels, following
the procedure applied before to PET. A typical result can be
seen in Fig. 4, where the stress has been divided by absolute
temperature T (since o oc T from Egs. (12) and (13)). A
horizontal ‘rubbery’ plateau between 134 and 140 °C can be
seen clearly. In this region, SP is fully relaxed on the time-
scale of the experiment, but ¢ has not commenced relaxing
significantly. This demonstrates the separability of the two
components of stress assumed in the model. Above 140 °C
the true stress begins to fall again, although very gradually.
It should be noted that the existence of the rubbery plateau
does not mean that a hyperelastic material model would
accurately simulate behaviour at these temperatures. At
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Fig. 4. Isometric plot of true tensile stress at uniaxial stretch A = 1.85 as a
function of temperature, for uniaxial drawing of sample PMMAI at a
nominal strain-rate of 0.4 min~'. The stress has been normalised with
respect to the absolute temperature so that a rubbery entropic response
would produce a horizontal line. The rubber-like plateau is in evidence
between 134 and 140 °C.

larger strains, the longer time available in the experiment
could allow relaxation of ¢ ¢ to intervene.

5.3. Glass-like response

The relaxation of S°, constituting glass-like visco-
elasticity, was represented by only one relaxation time in
the present work, and it was possible to fit the corresponding
parameters manually, in a similar manner to that used before
for PET [4]. The instantaneous elastic moduli for PMMA
were taken from the previous work of two of us on the creep
behaviour of the material [26]: G° = 0.83 GPa and K® =
2.12 GPa, with temperature-dependence neglected.

From data such as given in Figs. 1-3, it is clear that yield
occurs at strains of ca 0.1 or less, and under these conditions
the conformational stress makes a negligible contribution.
According to the model, provided the argument of the sinh
term in Eq. (10) is unity or larger, the condition for yield is
given as follows in terms of the mean stress, octahedral
shear stress and the shear component of D on the octahedral
plane: o, 7, and d,, respectively (see Buckley and Jones

(3D

VsToct + Vpo-m
2RT RT

(20)

=Ind,, + ln< RT

M()Vs )
where u, is the linear limit viscosity (g = 2G"7,). In the
case of yield in uniaxial tension we have 7, = ﬁay/3,
On = 0y/3, doo = A/\/2X and hence Eq. (20) becomes
after re-arrangement

9 ___ OR mf P ) 4l Q1)
T 2V, ++2V, V2RT A

Eq. (21) predicts that a plot of yield stress divided by
absolute temperature versus the natural logarithm of the
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true strain rate will be a straight line with gradient

6R

= 22
V2V, + 2V, @2

m

for uniaxial tension. Similarly, for uniaxial compression
where o, changes sign, a straight line will be obtained
with gradient

6R

me= —————. 23
\/Evs - 2Vp *3)
The two lines have a common origin at
A 2RT
‘— _ V2 4
A Vs/*‘LO

and the ratio of yield stresses in tension and compression is
independent of |A/A| and equal to

o 1 H2VV,
o 1 =2V, 1V,

(25)

as deduced long ago by Bauwens-Crowet [22], invoking a
pressure-modified von Mises yield criterion of the form
represented by Eq. (20). Solving Eqgs. (22) and (23) for the
activation volumes we obtain

e (L Ly Ry g
V2 \mg  m P2 \m mg

From curves such as those in Figs. 1-3, yield stresses were
determined as the true stress at the peak or sharp change in
gradient. Results for tension and compression are plotted in
the manner described earlier in Fig. 5. Although there is
noticeable scatter, attributable to the high temperature-
sensitivity of the yield stress in this temperature range, the
higher gradient for compression than for tension expected
from Eq. (22) and (23) is clearly discernible. Least-squares
fits to the two data sets gave m, = 7.07 X 10° and m, =
9.14 x 10° Pa/K, giving values for the activation volumes
of 4.42 % 10™* m® mol ! for V, and 0.399 X 10 > m® mol !
for V,,. The corresponding ratio for the yield stress ratio
from Eq. (25) is 1.29—very close to the value of 1.3 that
seems to be common, if not universal, in the literature
among measurements on glassy polymers.

The reference viscosity ug was found from the intercept
c; of the graph for tension in Fig. 5, using:

)

Vs

Mo = 27)
my

giving a value of 4.59 GPa s at 120 °C, which was chosen as
the reference temperature T”. The corresponding linear limit
viscosity for the compression tests, using sample PMMA?2,
was found to be 1.31 GPas at the lower temperature of
115 °C, suggesting a difference in 7, between the two
grades of approximately 6 °C. In plotting Fig. 5, to avoid
confusion, the compression data have been shifted vertically
to take account of the difference in T,.

True stress at yield (kPa)
absolute temperature (K)
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Fig. 5. Combined Eyring plot for uniaxial drawing of sample PMMAT1 and
compression of sample PMMA?2 at 120 °C: true stress at yield divided by
the absolute temperature versus the natural logarithm of the natural strain
rate at yield. The points for PMMAZ2 have been shifted vertically to account
for the difference in the glass transition temperature of the two samples.

5.4. Temperature-dependence of glassy response

The temperature-dependence of the viscosity w, was
found for temperatures up to 130 °C from measurements
of true yield stress in tension tests at various strain rates
and a range of temperatures, using the values of Vg, V,
already determined at the reference temperature. At the
highest temperatures, the yield stress decayed to the extent
that the condition for validity of Eq. (20) was not satisfied,
and the viscosity was calculated from the tensile yield stress
without approximation of the hyperbolic sine (see Adams
et al. [4] for the same approach applied to constant width

Relaxation time 7, (s)

102 [ T T T ]
e Obtained from data
Fit to equation (11)
10" |- —
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10" |- —
10—2 | | | |
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Fig. 6. Bond-stretching relaxation time 7y(= ,uO/ZGh) plotted versus

temperature, for sample PMMAIL. The curve shown is a best fit to
Eq. (11) with T; = T.
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drawing):
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Eq. (11) was re-arranged to give, for temperatures above T,
where T; =T

7 RT = RT"

T—-T, T —-T,

and the activation enthalpy AH,, for PMMA in the T, region
was obtained from the earlier unpublished work of
Babaiikochekseraii [27] as 289 kJ/mol. The values of w,
were used to compute the left hand side of Eq. (29), and
T, was then optimised to give the best linear relation
between the left hand side and 1/(T — T,). Finally C was
found from the gradient. The result was T,, = 96 °C; C =
1739K (£0.7K). Fig. 6 shows the temperature-
dependence of the linear-limit relaxation time 7, together
with the fitted Macedo and Litovitz equation (Eq. (11) with
T; = T). As can be seen, this equation provides a good fit to
the relaxation time over 3.5 decades, with the values of T
and C found.

5.5. Rubber-like response

The remaining model parameters, characterising the
rubber-like response of the PMMA, were fitted by using
least-squares optimisation, with the glassy parameters
already found. The optimiser needed to be applied with
care, however, because the physically based constitutive
model necessarily requires numerous material parameters,
and the intention was to avoid unphysical combinations of
parameters, that would be unreliable outside the window of
the present experiments. The approach adopted was to apply
the optimisation only to the minimum number of
parameters.

First the assumption was made that at 120 °C, near the
glass transition, the effect of entanglement slippage is
negligible. This allowed a fit of data to the network para-
meters independently of the slippage viscosity. Under the
assumption of no chemical cross-links, the corresponding
parameters are the slip-link density N, the inextensibility
factor «, and the slip-link mobility factor 1. As found
previously for PET, the best value of n was found to be
vanishingly small (~107%), which implies that on the
rubbery plateau the entanglements are fully constrained as
if they were crosslinks. The slip-link density was found to
be 3.01 X 10 m 3, with a equal to 0.15. Fig. 7 shows
typical data together with the model simulation at 120 °C,
assuming no slippage. It can be seen that the Edwards—
Vilgis rubber model employed here, with n =0 and the
values of N, and « fitted as above, can fit well a uniaxial
drawing experiment at this temperature.

The final stage in the fitting process was to find para-
meters describing the temperature-dependent flow due to
entanglement slippage. It was found that a single rubbery,
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Fig. 7. True stress versus nominal strain for uniaxial drawing of sample
PMMAL at 120 °C and a nominal strain-rate of 0.4 min~': experimental
data compared to the model simulation with optimised values of N, a and
n(= 0).

or conformational, relaxation process model could not
represent the data at all satisfactorily, even at a particular
temperature. Fitting the temperature-dependence of slip-
page clearly required more than one slippage relaxation
time.

For consistency with the molecular theory, and to reduce
the number of unknowns, the key assumption was made that
all viscosities vy, shared the same temperature-dependence
(i.e. the same values of C* and T,). This gave a total of
2P + 2 parameters to find: wy, y;, C*, T5,. The fact that it
was necessary to have more than one slippage relaxation
process (P > 1) is demonstrated clearly in Fig. 8, which
shows the difference between trying to model data for
128 °C using one or two slippage relaxations. As shown in
the figure, a single relaxation time model cannot represent

True stress (MPa)
20 T T T

Nominal strain

Fig. 8. Demonstration that more than one slippage viscosity is required:
simulation of drawing of PMMA at a nominal strain-rate of 0.4 min ' and a
temperature of 128 °C using the model optimised with P = 1 (broken line)
or with P = 2 (full line), compared with experiment for sample PMMA1
(data points). No reasonable fit is possible with only a single viscosity.
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Fig. 9. Temperature-dependence of slippage viscosities normalised to their
values at 128 °C (points), compared to the fitted Fulcher equation (15) with
Tf =T.

even the shape of the stress—strain curve. On the other hand,
it was found that no significant advantage was gained in
fitting the present data by using more than two slippage
relaxation processes. Consequently, the fit was accom-
plished with P = 2, proceeding in three stages. Firstly the
optimiser was used to find wy, y;" and y," for a temperature
T*" =128 °C (recall w, = 1 — w)). Secondly the optimiser
was applied to data for other temperatures T to find the shift
factor y,(T)/y;" = v,(T)/75", and thirdly the shift factor
was least-squares fitted to Fulcher equation (15) with 7 =
T to obtain C* and Ts,. The fit of the shift factor is shown in
Fig. 9, where it can be seen that the Fulcher equation
provides an excellent description of the temperature-
dependence of the entanglement slippage. Finally, to
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Fig. 10. Drawing of sample PMMAI at a nominal strain-rate of 0.4 min "'

and various temperatures shown: comparison between experimental data
(points) and the complete model with two slippage viscosities (lines), show-
ing that the model captures the change in shape of the stress—strain curve
with increasing temperature.

Table 1
Constitutive model parameters for PMMA studied in the present work. The
reference temperature and structural state were: 7" = T{ = 120 °C

Parameter Value Source
Unrelaxed shear modulus, G 0.83 GPa Ref. [26]
Bulk modulus, K 2.12 GPa Ref. [26]
Glass viscosity, uy 4.59 GPa s This work
Cohen/Turnbull constant, C 174 K This work
Limiting temperature, 7, 369 K This work
Glass transition temperature, T, 388 K This work
Activation enthalpy, AH, 289 kJ mol ! Ref. [27]
Shear activation volume, V; 4.423 %1073 m® mol ™! This work
Pressure activation volume, Vp 0.399 % 103 m> mol ! This work
Slip-link density, N, 3.01x10%m™? This work
Inextensibility factor, o 0.15 This work
Slip-link mobility factor, 0 0.0 This work
Slippage Cohen/Turnbull 34.6 K This work
constant, C°

Limiting slippage temperature, 390 K This work
Ts

Slippage spectrum

Network fractions, wy, (k = 1,2) 0.677 0.323 This work
Viscosities, yﬁ *k=1,2) 3.92 TPas 576 TPa s This work

confirm the internal consistency of this approach, we may
note from Fig. 9 that the viscosity estimated in this way for
120 °C is of order 10* higher than for 128 °C. Thus the
original assumption of no contribution from entanglement
slippage at 120 °C was a good approximation, and no further
iteration was required.

Combining all these results, complete simulations were
possible for the tensile drawing of PMMA across the wide
temperature span from 115 to 160 °C. Fig. 10 shows the
quality of the fit achieved between simulated and measured
stress—strain data across this range. The complete set of
parameters used in modelling the PMMA is assembled in
Table 1.

5.6. Other stress states

Although the model was verified experimentally for
PMMA under only uniaxial tension and compression,
there is good evidence from previous work that the form
of model used here would give a satisfactory representation
of response under other stress states. Firstly, the multi-axial
generalisation of the Eyring flow process used here implies
the pressure-modified von Mises yield criterion, Eq. (20),
well-known to have wide applicability to glassy polymers,
and verified for amorphous PET above the glass transition
[28]. Secondly, the Edwards—Vilgis free energy function
has been found to capture the strain-state dependence of
entropy-elastic strain-stiffening [4]. Thirdly, the entangle-
ment slippage (network relaxation) flow process of the
present model is assumed isotropic, isochoric and
Newtonian: under these restrictions, its three-dimensional
representation can only take the form employed here—
Eq. (14).
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6. Discussion
6.1. The extended model

The present work has shown that, to model the hot-
drawing of even the high molecular weight polymer cast
PMMA, in the temperature range of practical significance
for processes such as thermoforming, it is necessary to
incorporate relaxation of the rubber-elastic stress. This
observation is not new. It has been noted frequently in
relation to strain-stiffening below the glass transition, and
also by G’Sell and Souahi in the present context of PMMA
above T, [19]. The description employed previously,
however, in terms of a network with temperature-varying
structure is not adequate for engineering purposes in process
modelling, since the constitutive effects of temperature-
history are not defined. The present approach overcomes
this problem and provides a fully prescribed three-
dimensional constitutive model. There is clearly a cost,
however. We have shown that at least a modest relaxation
spectrum must be invoked. Given that the elastic strains may
be large in thermoforming, the extension of the original
single-relaxation model [4] to include a spectrum is at
some computational cost. Fortunately, for the PMMA of
the present study, only a doublet relaxation spectrum was
necessary.

The operation of the model, and the clear need for a
multi-component representation of entanglement slippage
may be seen by separating the stress into its component
parts during tensile drawing: ¢°, o and o5. In Fig. 11 a
simulation is shown that reveals the contribution of each of
the components to the total stress during tensile drawing at
122 °C. This temperature was chosen because at this
temperature entanglement slippage has just become
apparent. The glassy or bond-stretching contribution to the
stress falls continuously after yield because drawing at a
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Fig. 11. Simulation of uniaxial tensile drawing of sample PMMAI at
122 °C and a nominal strain rate of 0.4 min ' (full line), showing contribu-
tions of the three different components of the model stress: conformational
stresses oy with k = 1 and 2; and bond-stretch stress a®.

constant nominal strain-rate (falling true strain-rate) is
being simulated. Initially both of the rubber stress curves
coincide, because neither network has relaxed. At a lower
temperature or a faster draw rate this would continue
throughout the simulation. However, for the conditions in
the simulation shown, the first fraction of the rubbery
network begins to relax through entanglement slippage,
while the second fraction does not relax at all during the
time-scale of the simulated experiment.

6.2. Glass-like response

In comparing the model simulations with experimental
results in the small strain region near yield, the reader will
note that the observed yield peak is not predicted by the
model. This is a consequence of employing the isostructural
assumption. We have neglected the possibility of change in
the structure (de-ageing) during deformation, as would be
expressed through variation in 7;. This is a deliberate
simplification employed here to keep the complexity of
the glass-like part of the model within bounds, since the
primary interest is in the large strain response. Other recent
work at Oxford [29] has shown how the restriction can be
relaxed, to model better the yield of amorphous polymers
below T,. We note in this context, however, that the present
results provide an interesting observation. Figs. 2 and 3
show that in the glass transition region the yield peak is a
kinetic phenomenon. The yield peak is observed only at the
highest strain-rates. At the slower rates the structure can
presumably re-age on the time-scale of the experiment to
preserve the original structure throughout.

It is instructive to compare the glass-like part of the
response observed in the present work just above 7, with
results of other authors obtained below Tg, since an essential
feature of the model is the claimed continuity of constitutive
response through the glass transition. The most compre-
hensive data available on the yield of PMMA below the
glass transition were published many years ago by
Bauwens-Crowet [22]. By employing compression tests to
overcome the inherent brittleness of PMMA, she studied
plastic deformation over the wide temperature range
—20-100 °C. The results revealed clearly the separate
contributions made by the a and B viscoelastic relaxation
processes to yield in this polymer. At the high end of the
temperature range, the response was shown to be dominated
by the « process, as in the present work. Bauwens-Crowet
also anticipated our approach by interpreting yield in terms
of a three-dimensional generalisation of the Eyring theory,
including the effect of hydrostatic stress. Expressing her
results from compression and tension tests at 100 °C and
below in terms of the present model, leads to values for the
activation volumes of V, = 5.80 X 10~% and V, = 0.520 X
1073 kJ/mol, and hence from equation (25) a ratio of yield
stresses oy/oy = 1.29. The corresponding values from the
current work above T,, of 4.42x 107, 0.399 X 10~ and
1.29, respectively (see above), are satisfactorily close.
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In principle, a comparison could also be made between
the values deduced here for parameters C and T, that
govern the sensitivity of relaxation time 7, to the glass
structure, and those obtained previously from linear visco-
elastic measurements on conventional PMMA. However,
the neglect by previous authors of the Arrhenius contri-
bution to 7y and the scatter in reported values [30] (C =
2700-5900 K and T, = 270-320 K), vitiates any useful
comparison.

6.3. The network parameters

From data obtained above the glass transition, it is
interesting to compare the parameters of the entanglement
network determined here with those obtained by other
workers using different descriptions of the rubber-like
elasticity of PMMA. If there are N, inter-entanglement
sub-chains per unit volume, this number can be related to
the slip-link density through N, = gN;, where the factor g is
a matter of debate in the literature. Strict interpretation of
the Edwards—Vilgis model, which allows for fluctuations of
network junction points, applied to a network of tetra-
functional entanglements would dictate g = 2. Previous
authors working on the present topic, however, have
invoked network models that assume affine displacement
of junction points, equivalent to putting g = 1 : this value
is invoked in the following comments. The resulting sub-
chain density N, = 3.01 X 10°® m > may be compared with
an apparent sub-chain density of close to 2.0 X 10*° m ™
deduced by G’Sell and Souahi [19] from data for an
uncrosslinked PMMA at 120 °C, employing the Wu and
Van der Giessen 3-chain/8-chain hybrid representation of
non-Gaussian rubber elasticity. Similarly, 2.4 X 10 m ™
was deduced for the sub-chain density by Kahar, Duckett
and Ward [31] from their birefringence measurements at
116.5 °C, employing a Gaussian description. Close to the
glass transition, where entanglement slippage makes least
contribution, agreement is reasonable between the present
work and these previous authors. The values of N, corre-
spond to a molecular weight M, between entanglements in
the range 2400-3612, in other words 48-72 backbone
bonds. It should be noted, however, that these values lie
significantly below those obtained previously from
measurements of the rubbery plateau shear modulus, G° in
the model notation but normally known as GR,, where
reported values [30] give M, = 4700 for conventional
PMMA.

The inextensibility factor o = 0.15 obtained here
suggests that there is a large number of (freely orienting)
Kuhn segments between entanglements in the PMMA
network: n = 44. Combining this with the values of M,
quoted earlier from hot-drawing of PMMA produces the
unphysical conclusion that there are only 1.1—-1.6 backbone
bonds per Kuhn segment. A value of ca. 10 is implied by
available values of the characteristic ratio: C,, = 7 (see
Flory [32]). A similar inconsistency was found in the data

for PET [4]. The source of the anomaly in both cases—
PMMA and PET—is probably some unavoidable contri-
bution of entanglement slippage in the apparent network
response even at the lowest temperatures, close to 7,. This
could lead to an underestimate of « and possibly a
compensating overestimate of N,. Another possibility is
some inaccuracy in the form of the Edwards—Vilgis free
energy function. On present evidence, this issue cannot be
resolved.

We differ, of course, from previous authors in our
intepretation of the entanglement slippage at higher
temperatures. Those authors who invoke a temperature-
varying network structure claim a continuous fall in chain
density and increase in chain length between entanglements
with increasing temperature [19]. There seems to be no
other experimental evidence for such a temperature-induced
change in topological structure of the melt. Indeed, given
that the equilibrium topology for a linear polymer must be
determined by chain flexibility and hence by chemical
structure of the monomer, such a change with temperature
is unlikely. The present model does not invoke such an
unphysical structural change.

The other major advantage of the approach presented here
is its applicability to any strain-history or temperature-
history, as it is fully constitutively defined: an essential
requisite for application to process modelling. The success
of the extended constitutive model in simulating PMMA
over such a wide temperature range suggests that the
network fraction assumption introduced in this paper is an
adequate description. The present data indicate that it is
sufficient to invoke a single set of network parameters,
provided different fractions of the network are allowed to
relax through entanglement slippage at different rates.

As we pointed out earlier, in general it is not useful to
consider the entanglement slippage behaviour in terms of
relaxation times. To aid discussion, however, we can obtain
the linear-limit slippage relaxation times at a particular
temperature, using the expression

= Y
K ONkeT

(30)

At a temperature of 128 °C these linear limit relaxation
times are 387 and 56 836 s, respectively, and the ratio is
147. It is tempting to associate these with the two dominant
relaxation times 7z and 74 in the tube theory, but it is clear
from their ratio that this may not be justified. Theory
predicts 74/7y = 3.75M/M, (see Doi and Edwards [1]),
which exceeds 147 by an order of magnitude for the present
polymer. We do not, therefore, claim that these relaxation
times have any special physical significance. Rather, the two
apparent relaxation processes undoubtedly represent the
combined effects of a spectrum similar to that of the tube
model (whose details are themselves a matter of dispute),
overlaid in an ill-defined manner by effects of polydispersity
and possibly some residual monomer and other non-
idealities.
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7. Conclusions

This paper has shown how the same glass—rubber
constitutive model, that previously found success in model-
ling the hot drawing of PET, can (with stress-crystallisation
removed) also model the hot drawing of high molecular
weight PMMA. The model incorporates relaxation of the
rubber-like conformational stress, enabling it to simulate
the response from 7, through the thermoforming tempera-
ture range. A major advantage of the way the model is
structured is that it is fully constitutively defined in three
dimensions, irrespective of the loading history. This is not
the case for alternative models that capture the effects of
relaxation of the rubber-like network by empirical variation
in the parameters of the network with strain, rate or
temperature.

In the case of PMMA, however, we have shown that the
representation of conformational stress relaxation requires
more than the single flow process adequate for PET, and the
model has been generalised to accommodate an arbitrary
number of fractions of the entanglement network acting in
parallel, each with a different viscosity. Although this
potentially increases the number of fitting parameters with-
out bound, in practice the problem did not arise. For
PMMA, a good fit to experiment was obtained by an
extension to a single network with just two fractions with
different entanglement slippage viscosities. Hence, only two
additional parameters were required.

Besides its practical advantages, the model benefits from
having a well-defined relationship to molecular theories of
polymers above the glass transition. In the limiting cases of
(a) hyperelasticity on the rubber plateau, and (b) linear
viscoelasticity, given the correct parameter set, it can be
made quantitatively equivalent to results from the molecular
theory. This is attractive for relating model parameters to
molecular features.

This work has also shown that all the necessary model
parameters can be obtained by performing two sets of
tension tests (with varying temperature and varying strain-
rate) and one set of compression tests (with varying strain-
rate) on a single tension/compression testing machine. In
fact, since our results have confirmed that PMMA above
T, shows the apparently almost ‘universal’ value of 1.3
for the ratio of yield stresses in tension and compression,
tensile tests alone may be sufficient.

We believe this paper demonstrates a complete method-
ology for the modelling of high molecular weight PMMA in
thermoforming processes above the glass transition,
provided rates of deformation do not greatly exceed those
employed here. It comprises a fully defined three-
dimensional constitutive model that has consistency with
physical theories but is structured in simpler form for
greater computational efficiency in process modelling.

Parameters of the model were found from constant nominal
strain-rate tests in tension and compression, and systematic
procedures for the data processing required to obtain these
have been presented. The methods used are applicable in
principle to all entangled amorphous polymers above the
glass transition, close to the rubbery plateau, and we
would expect the same methodology to apply to other
polymers under these conditions. Thermoforming at much
higher rates, however, would imply the possibility of signifi-
cantly non-Newtonian flow in the entanglement slippage
process, not included in the present model.
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